7,714 research outputs found

    Condensation of degrees emerging through a first-order phase transition in classical random graphs

    Get PDF
    Due to their conceptual and mathematical simplicity, Erd\"os-R\'enyi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results.Comment: 8 pages, 6 figure

    Level compressibility for the Anderson model on regular random graphs and the eigenvalue statistics in the extended phase

    Get PDF
    We calculate the level compressibility χ(W,L)\chi(W,L) of the energy levels inside [L/2,L/2][-L/2,L/2] for the Anderson model on infinitely large random regular graphs with on-site potentials distributed uniformly in [W/2,W/2][-W/2,W/2]. We show that χ(W,L)\chi(W,L) approaches the limit limL0+χ(W,L)=0\lim_{L \rightarrow 0^+} \chi(W,L) = 0 for a broad interval of the disorder strength WW within the extended phase, including the region of WW close to the critical point for the Anderson transition. These results strongly suggest that the energy levels follow the Wigner-Dyson statistics in the extended phase, consistent with earlier analytical predictions for the Anderson model on an Erd\"os-R\'enyi random graph. Our results are obtained from the accurate numerical solution of an exact set of equations valid for infinitely large regular random graphs.Comment: 7 pages, 3 figure
    corecore